Конкурсные и цилиндрические краны являются одним из простейших типов запорной арматуры. Их конструкция может состоять из двух деталей – корпуса и пробки. В Китае и других странах эпохи Древнего мира для подачи воды к потребителям использовались стволы бамбука. Вполне вероятно, что для управления потоком мастера могли изготовить простейший цилиндрический кран, вставив в поперечное отверстие трубы отрезок бамбука меньшего диаметра с отверстием.
Управление могло осуществляться поворотом вставки (пробки) крана.
Бронзовые краны были первой арматурой, изготавливаемой в массовом производстве в Древнем Риме. Химический состав этих кранов регламентировался одним из первых в истории человечества государственных стандартов, разработанных 2 000 лет назад. Установленное этим стандартом процентное содержание меди и свинца было практически одинаковым с предписывавшими современными стандартами Американского общества по испытанию материалов ASTM. Номинальные размеры кранов также были стандартизованы. Древнеримские стандарты «Модули» и «Формулае» положены в основу разработки современных спецификаций ASTM, ASME, ISO, EN, ANSI, API, DIN, BSI, ГОСТ и др.
Для обеспечения нужд водопроводов в Древнем Риме работало много мастерских с поставкой, транспортировкой и сборкой тысяч метров свинцовых труб и огромного количества бронзовой трубопроводной арматуры. Римские краны состояли из корпуса, в некоторых конструкциях – дна и цилиндрической или конической пробки. Поворот пробки осуществлялся длинным рычагом, вставлявшимся в отверстие на хвостовике. На нижней части пробки выполнялась проточка, в которую входил выступ корпуса, получаемый ударом молотка по оправке. Соединение не препятствовало повороту пробки и не позволяло извлечь ее из корпуса крана. Краны были способны регулировать расход и температуру путем изменения сечения. С развитием науки и техники в VIIX-VIIIX вв. появилось много усовершенствований известных конструкций кранов. Так, для поочередной подачи пара и охлаждающей воды в паровых машинах французский изобретатель Дени Папен, много лет проработавший в Англии, предложил конструкцию четырехходового крана (рис. 1).
В течение длительного периода управление паровыми и водяными системами паровых насосов и машин осуществлялось исключительно кранами.
В 1698 году английский изобретатель Томас Севери запатентовал паровой насос для откачки воды из затопленных шахт. Его насос многократно совершенствовался многими механиками. В истории паровых машин широко известен англичанин Томас Ньюкомен. Главное усовершенствование Ньюкоменом насоса Севери состояло в применении кожи для уплотнения между поршнем и цилиндром, а также впрыске воды для конденсации пара не на цилиндр снаружи, а непосредственно в цилиндр. Управление машиной Ньюкомена осуществлялось вручную – для этих целей нанимали специального человека, в задачи которого входило с определенной периодичностью открывать и закрывать краны. Он был обязан целый день стоять у машины и попеременно то открывать кран с горячим паром для заполнения цилиндра, чтобы поршень давлением пара гнало вверх, то открывать кран с холодной водой, чтобы охлаждался пар и поршень опускался под действием атмосферного давления.
В 1713 году мальчик Хэмфри Поттер, работавший у одной из машин, придумал, как заставить краны работать самостоятельно. Это изобретение стало первым примером синхронизации работы двух конструкций арматуры. Только в 1715 году на паровых машинах системы Ньюкомена появилась полностью автоматизированная система паро-водораспределения.
Совершенствование кранов было направлено на обеспечение надежной работы в паровых средах. Для этого стало необходимым отделить трущиеся поверхности друг от друга. Эта задача была решена созданием конструкции крана с подъёмом пробки (рис. 2), например, в патенте США, выданном Горацио Аллену в 1855 году.
Автор заявляет, что изобретение имеет целью, во-первых, уменьшение трения, и, следовательно, износа и усилия, необходимого для работы; а во-вторых, получение большой быстроты действий. Последняя особенность имеет значение для применения крана в качестве паровой арматуры. Указанные цели достигаются обеспечением на каждой операции открытия-закрытия двух движений подряд, эти движения выполняются в направлениях под прямым углом. Первое движение небольшое, направленное параллельно оси конуса и воздействующее на торец пробки, и другое – в направлении, стремящемся повернуть ее.
Изобретатели работали над обеспечением работоспособности арматуры при минусовых температурах. В 1877 году патентным ведомством США С. Парсону был выдан патент на натяжной конусный кран с дополнительными камерами в корпусе, соединенными с отверстием в пробке (рис. 3). При закрытии крана жидкость, находящаяся между пробкой и корпусом крана, вытесняется в одну или несколько камер и, превратившись в лед, исключает поломки или разрушения корпуса.
В 1878 г. С. Бурке получил патент на кран с удлиненным штоком (удлиненной крышкой) для подземной установки (рис. 4). Такие краны широко использовались на трубах, уложенных под землей при строительстве водопроводных сетей.
Главная проблема конусных кранов состоит в том, чтобы в реальной конструкции были обеспечены два трудно сочетаемых, а иногда и взаимоисключающих требования. С одной стороны, осуществить плотный контакт между коническими поверхностями пары корпус-пробка и создать удельные давления, обеспечивающие герметичность. С другой – обеспечить свободный плавный поворот пробки, не допуская ее заклинивания и возможности задирания уплотнительных поверхностей. Важным фактором является тот факт, что финишной операцией обработки конических поверхностей является притирка, которая диктует необходимость изготовления корпусов и пробок из материалов, обладающих хорошими антифрикционными качествами (латунь, бронза, чугун), либо они подают смазку между уплотнительными поверхностями.
Еще в Древней Греции ученый и изобретатель Герон Александрийский предложил вводить смазку между корпусом и пробкой конусных и цилиндрических кранов для обеспечения их герметичности, уменьшения усилия поворота пробки и исключения ее залипания. Шведский инженер Свен Нордстром в начале ХХ века получил много патентов на конструкции кранов со смазкой (рис. 5) и методы ее подачи между трущимися уплотнительными поверхностями, форму и места расположения канавок для смазки на пробке и корпусе.
Еще в древние времена люди научились регулировать температуру и расход воды в термах. Наиболее эффективной конструкцией, обеспечивающей выполнение этой функции, стали краны с удаленной частью пробки (рис. 6). Кроме этой конструкции в Греции и Древнем Риме применяли эксцентриковые краны, в которых ось вращения пробки не совпадает с осями уплотнительных седел и (или) с осью патрубков. В ХХ веке этот способ стал широко использоваться в дисковых затворах и регулирующих кранах, содержащих в качестве регулирующего элемента часть сферической пробки.
Было время, когда пробковые краны были основным выбором для нефтеперерабатывающих заводов наравне с прочими типами арматуры. Сегодня конусные краны используются на многих агрессивных химических средах. Регулирование в системах распределения природного газа по-прежнему осуществляется в значительной степени пробковыми кранами со смазкой. До начала производства шаровых кранов на магистральных газопроводах применялись конусные краны с диаметрами до 700 мм, которые устанавливались за рубежом и в СССР на газопроводах.
Шаровые краны широкое распространение получили в ХХ веке. Их производство было налажено только через 80 лет после появления патента. В 1871 году Джону Варрену был выдан патент США на шаровой кран, это изобретение называлось Stop Cock (запорный кран). Патентом предусматривалось уплотнение в затворе металл по металлу, однако обеспечить приемлемую герметичность с таким уплотнением было невозможно. После изготовления нескольких партий производители отказались от организации серийного производства этих кранов.
В 1938 г. химики компании Kinetic Chemicals Inc. (совместного предприятия фирм Du Pont и General Motors) случайно создали твердое воскообразное вещество. Новый материал был чрезвычайно скользким и гладким, к нему ничего не прилипало. Этим неумышленно созданным материалом оказался тефлон – материал, открытие которого позволило создать конструкцию шаровых кранов с плавающей пробкой, которые изготавливаются с DN 300 (и меньше), в то время как краны с шаром в опорах могут быть изготовлены очень больших размеров. Последние более приемлемы для высоких давлений и больших диаметров. Шаровые краны изготавливаются также с твёрдыми металлическими уплотнительными кольцами для использования на абразивных средах, при высоких температурах, в условиях дросселирования и огнестойкости.
В течение последних 65 лет появилось много изготовителей и разнообразных конструкций. Шаровые краны, предназначенные для работы в сантехнических системах, почти полностью вытеснили из обращения арматуру других типов. В настоящее время шаровые краны, укомплектованные новыми эластомерами и полимерными материалами для уплотнительных колец, стали полностью герметичными. Другими характеристиками шаровых кранов являются: минимальное гидравлическое сопротивление, низкий крутящий момент, поворот шара на 90 градусов между положениями «закрыто» и «открыто», незначительные эксплуатационные затраты, компактная конструкция и пожаробезопасное исполнение. Краны включают корпус, шаровую пробку, шток и уплотнительные кольца. Краны с корпусами из двух или трёх частей имеют преимущество в простоте обслуживания и ремонта. Краны с верхним разъёмом обеспечивают условия для их обслуживания без демонтажа корпуса, что даёт им предпочтение с точки зрения безопасности и оперативности. Установка кранов исключает возможность протечек через разъёмы корпуса и их непроизвольного раскрытия при обслуживании. Шаровые краны могут изготавливаться из проката, поковок или литья в исполнениях с одним, двумя или тремя разъёмами с резьбовыми или сварными встык или в раструб патрубками.
Шаровые краны бывают полнопроходными или зауженными. В полнопроходных кранах диаметр проходного сечения соответствует внутреннему диаметру трубопровода.
Максимальное заужение прохода (минимальное сечение) регламентировано стандартом ISO 7121. Материалы, обычно применяемые при изготовлении шаровых кранов, – углеродистая сталь марок 20Л или 25Л или сортовой прокат аналогичных марок для корпусных деталей и легированные стали марок 20Х13 и14Х17Н2 для пробок и штоков. Для применения на коррозионных или низкотемпературных средах корпу сы и пробки кранов изготавливаются из нержавеющих сплавов. Для уплотнительных колец и уплотнений по штоку используется чистый или наполненный фторопласт, обладающий низким коэффициентом трения (менее 0,1) и химически стойкий. Однако фторопласт теряет свои свойства при температуре выше 100 °С, а при температуре 230 °С его стойкость падает до нуля. Это вынудило использовать таблицы зависимости рабочего давления от температуры для мягких уплотнений кранов. Указанная зависимость для чистого фторопласта регламентирована ISO 7121.
Максимальные температуры, при которых могут работать шаровые краны, определяются стойкостью к высоким температурам уплотнительных материалов. Чистый фторопласт обладает высоким коэффициентом термического расширения, и примеси силикона или графита могут быть использованы для снижения этого коэффициента. Обычные материалы могут использоваться при температуре ниже 240 °С. Для более высоких температур должны применяться другие материалы, например, терморасширенный графит, полиимид, РЕЕК или РЕS, которые могут повысить температурный предел до 350 °С.
Нейлоны, полиэстер – кетоны полиэфирэфиркетон (РЕЕК), флубон и другие модификации фторопласта, графитовые уплотнения, обычно терморасширенный графит используются для повышения регулирования только с малыми перепадами давления. В противном случае высокая скорость среды быстро разрушает уплотнительные кольца. При необходимости использования кранов для регулирования с большими перепадами давления и высокими скоростями рабочих сред применяются металлические уплотнительные кольца и твёрдые покрытия шаров. Шаровые краны всё чаще используются для низких температур, включая криогенные, сжиженных природного и нефтяного газа, жидкого азота, кислорода. Это позволяет легко автоматизировать технологические процессы и расширяет диапазон применения шаровых кранов. Фторопластовые уплотнения при низких температурах становятся жёсткими, и это является причиной резкого увеличения крутящего момента. Удлинённая крышка предохраняет уплотнительные кольца штока от действия криогенных температур и образования льда вокруг неё.
Шаровые краны с металлическими уплотнениями становятся всё более популярными в применении как на абразивных средах, так и при высоких температурах (вплоть до 1000 °С). Использование шаровых кранов становится таким же широким и разнообразным, как разнообразны технологические процессы в промышленности. Оно распространяется от простых условий эксплуатации, таких как применение на воде, растворителях, кислотах и природном газе, до более трудных и опасных, таких как газообразный кислород, перекись водорода, метан и этилен. Ограничения использования по температурным характеристикам и свойствам материалов уплотнений уменьшаются в результате исследований и появления новых материалов, что делает возможным расширение применения шаровых кранов в будущем.
Перспективно применение для уплотнений шаровых кранов фторопласта, подвергнутого радиоактивному облучению. После облучения фторопласт не теряет уплотняющей способности как при высоких, так и при криогенных температурах. Доктор физико-математических наук С.А. Хатипов в статье «Фторопласт: закалка радиацией», опубликованной в журнале «Химия и жизнь» (№ 8, 2009 г.), описал новую технологию существенного улучшения свойств фторопласта, широко применяющегося для уплотнений всех типов арматуры, в особенности, в шаровых кранах. Политетрафторэтилен (он же фторопласт-4 или тефлон) по химической стойкости превосходит платину, кварц и графит, что делает его прекрасным материалом при работе с агрессивными средами. Это очень скользкий материал, обладающий низким коэффициентом трения, поэтому он просто незаменим в узлах трения. Он выдерживает очень высокие и очень низкие температуры, имеет самые высокие диэлектрические и антиадгезионные характеристики, надежно противостоит ферментам и микробам. Однако оказалось, что этот полимер обладает очень низкой стойкостью к истиранию, высокой ползучестью (необратимо деформируется при малых нагрузках) и совершенно не стоек к радиации. Причем по этим характеристикам он тоже рекордсмен. Так, доза, при которой его прочность снижается вдвое, на порядок ниже той, при которой стерилизуют продукты, и на два-три порядка ниже типичных значений для других полимеров. Аналогичным образом он отличается от других полимеров по износостойкости и текучести.
Трудно было ожидать, что найдется такой способ модификации, который устранил бы недостатки фторопласта, но при этом максимально сохранил его преимущества и универсальность. Однако на рубеже XX и XXI веков такой способ появился. Более того, результат превзошел все ожидания: стойкость к истиранию новой модификации ПТФЭ увеличилась более чем на четыре порядка (в 10 000 раз), а параметры стойкости к текучести и к радиационной стойкости улучшились на один-два порядка. При этом коэффициент трения даже снизился, а химическая и биологическая инертность, низкая поверхностная энергия и диэлектрические свойства остались такими же. Новая технология не требует каких-либо наполнителей или химических реагентов и целиком основана на изменении надмолекулярной структуры материала. Изменение происходит, если на него подействовать ионизирующим излучением – той самой радиацией, к которой он не стоек. Теперь фторопластовые детали могут служить не полгода-год, а 10 лет и дольше.
Облучение ПТФЭ гамма-лучами в расплаве малыми дозами (не более 20 Мрад) приводит к модификации с уникальным сочетанием свойств. После такой модификации получается фторопласт, лишенный недостатков исходного полимера, но обладающий всеми его преимуществами. Он приобретает сверхвысокую износостойкость (эта характеристика улучшается в 40 000 раз), меньшую скорость ползучести (в 30-50 раз) и повышенную радиационную стойкость (в 102 и более раз). При этом коэффициент трения снижается (на 20-30 %), а диэлектрические, антиадгезионные и химические свойства остаются такими же, как у исходного полимера. Подвергнутый радиационной «закалке» ПТФЭ ученые назвали рафлоном. Его применение способно существенно улучшить характеристики арматуры в системах производства и регазификации сжиженного природного газа при криогенных температурах, а также значительно повысить предел применения шаровых кранов при высоких температурах.
Регулирующие шаровые краны аналогичны по конструкции стандартным, но с использованием профильного выреза в шаре. Краны обеспечивают сплошной поток с небольшим перепадом давления и хорошо подходят для регулирования эрозионных или вязких жидкостей, пульп и других растворов. Шар остается в контакте с сёдлами в процессе вращения, и это производит эффект очистки, чтобы минимизировать загрязнения. Краны могут управляться стандартными приводами с позиционерами.
Для вязких и застывающих (кристаллизующихся) сред (парафинистых мазутов, фенолов, смол) применяются краны с паровым обогревом корпуса. Благодаря нагретому паром корпусу сохраняется жидкотекучесть рабочей среды и обеспечивается работоспособность крана на вязкой жидкости.
В 2008 году в стандарте Американского нефтяного института API 6D/ISO 14313 были включены понятия закрытия кранов с двумя уплотнениями с односторонней и двухсторонней герметичностью и требования по испытаниям изделий для проверки выполнения указанных функций.
DBB (Doble Block and Bleed) – закрытие арматуры с двумя односторонними уплотнениями и дренажом в патрубки из полости между ними. Данная арматура не обеспечивает двусторонней герметичности, когда только одна из сторон находится под давлением.
DIB (Doble Isolation and Bleed) – закрытие арматуры с двумя двусторонними уплотнениями и дренажом из полости между ними в дренажное отверстие. Эта функция может быть реализована при односторонней и двусторонней подаче среды.
Включение в стандарты указанных функций и их контроля стала весьма популярной в шаровых кранах, особенно в связи с развитием конструктивных исполнений с пробкой в опорах, нынче широко распространенных. Термин DBB уже довольно давно применяется в отношении шаровых кранов и задвижек. Этот термин означает способность арматуры отсечь давление со стороны каждого входного патрубка, а также сбросить среду, скопившуюся между седлами. Указанная функция позволяет пользователю определить наличие утечек в затворе без демонтажа арматуры с трубопровода.
Арматура конфигурации DIB находит широкое применение в контрольно-измерительном оборудовании, для разделения различных жидкостей в технологических трубопроводах и как отсечная арматура при проведении технического обслуживания. Сущность этой функции состоит в том, что второе седло дублирует герметичность, т. е. если первое седло протекает, есть возможность обнаружить это, не допуская утечки в трубопровод за краном в то время, когда он находится на техобслуживании или ремонте.
В журнале «Арматуростроение» (№ 2, 2006 г.) была размещена статья Рафаэля Ангелини, работника итальянской компании Cesare Bonetti SpA, «Шаровой кран с многослойным уплотнением». В статье автор описывает оригинальный элемент конструкции шарового крана (рис. 10), позволяющий расширить применение для тяжелых условий эксплуатации. Седла крана изготавливаются из чередующихся слоев нержавеющей стали и расширенного, а затем спрессованного графита, что позволяет оптимизировать характеристики потока среды в наиболее «износоопасный» момент работы крана: при начале его открытия и при окончании закрытия.
Чередующиеся слои металла и графита оказывают локальное воздействие на поток, заставляя его многократно сжиматься и расширяться, образуя почти неподвижный пограничный слой. Этот феномен особенно важен. Получая возможность расширяться, проходя через входное сечение, или сжиматься на выходе, поток испытывает пульсацию давления, следуя мимо металла и графита, когда каждый слой графита воспринимает лишь часть общего перепада давления.
Конкретный пример – применение шаровых кранов на геотермальных паропроводах. Термодинамические внутренние трансформации пара внутри арматуры приводят к образованию твердого осадка, который остается на поверхности седел. Поэтому открытие/закрытие происходят ненадлежащим образом. До применения описанного шарового крана производилась периодическая (каждый месяц) замена арматуры. Шаровой кран с многослойными уплотнительными кольцами отработал более года без техобслуживания.
И в будущем трубопроводная арматура способна обеспечивать выполнение многих новых технологий.