С.Л. Горобченко, В.Н. Дубров. Прогноз развития конструктивных решений в арматуре: полый шток. Часть 1.

С.Л. Горобченко, В.Н. Дубров. Прогноз развития конструктивных решений в арматуре: полый шток. Часть 1....

ВВЕДЕНИЕ

Среди множества деталей, входящих в арматуру, узел штока, по всей видимости, является наиболее консервативным. За последнее время значительное развитие получили такие детали арматуры, как затворы, сальники, седла и уплотнения, о чем свидетельствует множество публикаций в профессиональных журналах, тогда как публикации касательно повышения эффективности и работоспособности штоков практически отсутствуют, не считая некоторого внимания к наружным покрытиям. Во многом это связано с тем, что развитие штоков в арматуре не совсем очевидно.

В то же время валы, оси и пальцы, к которым по своим характеристикам относятся и штоки арматуры, показывают заметное продвижение вперед. Использование полых осей во многих поворотных устройствах и толкающих элементах уже известно. Так, проведя небольшой обзор литературы и патентов, вы обнаружите, что полые оси и штоки широко применяются в гидроцилиндрах и пневмоцилиндрах, а также в домкратах. Близкие родственники штоков – тела вращения, такие как пальцы, ролики и шпиндели станков – по своим характеристикам также приближаются к штокам арматуры, как и штоки шаботов, молотов и прессов.


ПОИСК ПОДХОДОВ

Для нас как для маркетологов важно найти тенденции развития штоков, основываясь на возможности созревания тех или иных решений для внедрения их в видимой перспективе. Проблема понятна, если учесть, что патентов, заявок и даже готовых к внедрению видов арматурной продукции существует значительное количество. Практически каждый год рождается и умирает множество новых вводимых на рынок продуктов.

Большую помощь в отборе лучших решений оказывает применение системного оператора по методике ТРИЗ. В качестве надсистемной части над штоками, определяющими их развитие, в соответствии с законом подавляющего действия надсистемы, мы можем принять систему развития валов и осей, обеспечивающих работу машинных узлов в наиболее близком к штокам арматуры режиме, а также пальцев и роликов, в зависимости от близости к характеристикам работы штока арматуры и уровня решения задач, в т. ч. и перспективных, которые еще не возникли в ходе развития узла штока арматуры.

Кстати, такой подход избавляет нас от необходимости самостоятельно искать проблемы, требующие решения при прогнозировании, поскольку, вследствие неотвратимости поступи надсистемы, они уже должны будут получить решение в других областях своего класса. Большинство неясностей, проблем, задач и неразвитых еще противоречий, от которых необходимо отталкиваться при прогнозировании, должны уже существовать и быть решены в рамках общей надсистемы. Она же показывает и основной путь развития всего класса деталей.

Наша цель будет состоять в оценке и применимости найденных решений, уже существующих в надсистеме, или выявленных противоречий в рамках задач, которые еще не были решены в подклассе «штоки для арматуры».

Влияние различных решений, связанных с развитием валов, осей, пальцев и роликов на развитие штоков, демонстрирует рис. 1.

Рисунок 1 – Система "Шток арматуры" и элементы, влияющие на ее развитие
Наш подход будет состоять в следующем: найти задачи, которые решались в различных областях надсистемы детали класса «валы и оси», и попытаться оценить их в применении к системе «штоки арматуры». После этого мы попробуем определить, какие задачи могут возникнуть в ходе развития штоков арматуры и спрогнозировать этапность возникновения таких задач.

«ШТОКОВЕДЕНИЕ»

Основная функция штоков
Штоки и шпиндели являются одним из основных элементов арматуры. Их важность определяется выполнением функции трансмиссии и движителя – передачи силового и управляющего воздействия на запирающий элемент. В этом плане основное внимание следует уделять качеству передачи усилия от источника энергии и движителя (привода) на запирающий элемент.

Основные проблемы штоков и шпинделей арматуры
Чтобы рассмотреть основные проблемы штоков, характерных для большинства видов арматуры, заглянем в стандарты, например, стандарт СТ ЦКБА 099 (1 ред. – 2011) Арматура трубопроводная. Ремонт трубопроводной арматуры. Общее руководство по ремонту. В соответствии с таблицей 1 («Перечень возможных отказов, признаков дефектов, а также параметров, по которым оценивается техническое состояние арматуры») к дефектам, которые возникают в связи с несовершенством шпинделя или штока, относятся следующие (см. выдержку):

Таблица 1 – Перечень возможных отказов, признаков дефектов, а также параметров, по которым оценивается техническое состояние арматуры (выдержка из СТ ЦКБА 099 (1 ред. – 2011)

Сальниковый узел
Из таблицы 1 следует, что основную озабоченность при развитии узла штока будет вызывать узел сальникового уплотнения, а проблемы в основном связаны с потерей внешней герметичности. На долю этого узла приходится до 70% всех случаев парения задвижек в обычных условиях работы. Это также означает, что в настоящее время сам шток – более надежный элемент, чем сопряженные с ним подсистемы арматуры.

Новые решения в области сальниковых узлов подразумевают также и повышенные требования к уровню изготовления штока. В частности, при изготовлении новых типов сальников с большей жесткостью или сальников с запорными конусами требуется более высокая точность изготовления штока и уплотняющего его элемента.

Однако обеспечение герметичности – это не основная функция штока, а вспомогательная, поскольку его главная задача – передавать силовое воздействие на затвор. В этом плане требуется провести анализ других характерных причин поломок, которые выведут нас на более значимые пути развития штоков. Так, по многим данным, заклинивание самого затвора может чаще определять проблемы со штоком. В частности, заклинивание часто приводит к обрыву штока.

Материал штока
Материалы тесно связаны с работой штока. Правильный выбор материалов для изготовления штока часто является наиболее эффективным средством для повышения ресурса его работы. Особенно это касается арматуры высокого давления и арматуры, работающей в условиях тепломеханических циклов и высокотемпературного нагружения. Для обеспечения эффективной работы штоков используют цементацию, азотирование и их разновидности, включая нитроцементацию, борирование и пр.

Значительное влияние на работу штока оказывает качество металла. При расследовании аварий часто выясняется, что структура металла в поперечном сечении штока может быть неоднородна. В то же время по существующей технологии упрочнение при закалке ТВЧ и создание неоднородной структуры является обычным способом повышения общей прочности и пластичности (внутри перлитная структура, снаружи – бейнитная или сорбитная мелкозернистая).

Однако ударный подрыв задвижки в таких случаях приводит к превышению предела текучести из-за особенностей ударно-вырывного нагружения даже при значительном запасе прочности металла штока. Сжатое напряженное состояние внутри стержня без возможности реализации пластического течения создает условия для внутренней потери пластичности в условиях всестороннего сжатия и приводит к быстрому зарождению трещины. В результате обрыв происходит, казалось бы, при обычных условиях...

Конструкторы постоянно борются с концентраторами напряжений, поскольку шток испытывает в основном нагрузку, близкую к симметричной, а повышение прочности материала, являющееся одним из основных способов увеличения стойкости штоков, вызывает также и повышенную чувствительность к концентраторам напряжений и образование трещин на них.

Борьбе с зарождением трещин в штоках, как механических, так и коррозионных, уделяют большое внимание. В частности, проблему пытаются решать при помощи гальванических покрытий, хромирования, создания все новых и новых типов покрытий, включая многослойные. В настоящее время покрытия считаются одним из самых эффективных способов борьбы с образованием трещин, задиров и пр.

Коррозия считается одной из важнейших проблем штоков, не только в связи с требованием отсутствия задиров, но и в связи с требованиями уменьшения вероятности зарождения коррозионных трещин. С требованием сопротивления образованию трещин связаны требования к полированию, выглаживанию и твердому коррозионностойкому покрытию поверхности штоков. В настоящее время основными способами борьбы с коррозионно-механическим разрушением считаются следующие методы:

- защитные покрытия штоков;

- нейтрализация сальниковой набивки и электролита (воды, пропитывающей набивку при гидроиспытании или во время эксплуатации и находящейся на границе набивки со штоком);

- применение сальниковых набивок, не вызывающих коррозионной активности контактирующих с ними штоков;

- применение коррозионностойких материалов.

Можно обозначить и другие проблемы штоков. Однако они будут либо слишком специализированными для конкретных условий применения, либо встречающимися достаточно редко. И в том, и в другом случае их анализ с целью прогнозирования развития штока может не дать существенного результата.

НАПРАВЛЕНИЯ РАЗВИТИЯ ШТОКОВ

Чтобы обеспечить основную функцию, компании развивают различные направления в решении задачи более идеального выполнения функции качественной передачи силового воздействия. Некоторые из них, которые удалось выявить, мы обсудим ниже.

Больше внимания к ближайшим подсистемам
Развитие штоков и шпинделей арматуры зависит от эффективности работы ближайших к ним подсистем и связанных с ними деталей.
Давайте разберем основные элементы шпинделя и определим их роль в потенциальном развитии шпинделя (рис.2).

Рисунок 2 ― Шпиндель вентиля на РN 1,5МПа
Основную функцию берет на себя участок соединения шпинделя с приводом как элемент передачи усилия от привода к штоку, и далее участок трапецеидальной резьбы, как обеспечивающий движение затвора. В меньшей степени важен участок соединения шпинделя с затвором, поскольку функция достаточно легко выполнима.

Роль сальникового узла, функция которого оказалась за пределами основной задачи – передачи усилия, в целом не должна привлекать большого внимания. Но этот узел занимает наибольшее по длине и весу значение, составляющее до 50% от всей материалоемкости и конструктивной длины штока. При этом его роль остается чисто передаточной по отношению к основной функции – силовой передаче.

Таблица 2 ― Вклад элементов шпинделя в выполняемую им функцию

Тем не менее этот узел (шток + сальниковый узел) наиболее сильно развивается в настоящее время, поскольку получает импульс от одной из важных функций работы арматуры – обеспечения внешней герметичности. В свою очередь уже она влияет на потери продукции (основная функция), загрязнение внешней среды (дальняя надсистема, до некоторого времени не играющая важной роли).

Главная проблема в штоках в рамках подсистемы арматуры «шток – сальниковый узел» – это обеспечение герметичности. Именно для решения этой ключевой задачи существуют такие операции по изготовлению штоков, как алмазное выглаживание, полирование и даже хонингование. Защититься одновременно от коррозии и износа стремятся использованием хромированных штоков, а иногда и применением керамического напыления, выглаживанием штоков при помощи ультразвуковой обработки и нанесением гладких минеральных покрытий. В связи с невозможностью добиться герметичности даже при такой дорогой обработке, одно из сильных решений – просто избавиться от сальника, заменив его на сильфон.

Одновременно идет постоянная борьба с коррозией, которая сильно мешает и основному назначению штока – быть силовым элементом передачи управляющего воздействия на запирающий элемент. В этом случае уже давно стало естественным применять нержавеющие стали и стали более высокого прочностного класса. Во многих случаях заметен переход от сталей к прочным титановым сплавам с нитридным напылением. К тому же разделение на классы задвижек с выдвижным и невыдвижным шпинделем во многом имеет в своей основе именно коррозионное поведение среды.

Ближайшей подсистемой штоков является их материал. До сих пор он был во многом инертен по отношению к требованиям, предъявляемым к штоку. Используются в основном стандартные материалы, отвечающие основному требованию по прочностным свойствам.

Однако материалы способны поглотить множество элементов, которые ранее приходилось вводить для обеспечения работоспособности штоков. В частности, вопросы задиров, смятий, усталостных поломок штоков и коррозионных разрушений, которые сегодня решаются введением ингибиторов (устранение возможности коррозии), хромированием (устранение задиров и коррозии), шабрированием и полировкой (предотвращение смятия) могут быть устранены при большем внимании к типу используемого материала и, например, применении биметаллических композиций.

Кроме собственно материала особенное развитие получает поверхность штоков и шпинделей. Выделяются зоны, требующие особенного внимания. Ими, в частности, является рабочая зона с сальниковым узлом, где требования к полировке и отсутствию различного рода захвата включений, которые могут привести к «разлохмачиванию» сальника, чрезвычайно высоки.

Нижняя часть штока, непосредственно взаимодействующая с рабочим органом – запирающим элементом,– должна эффективно передавать силовое воздействие, преодолевая через затворный орган сопротивление среды. Поэтому чаще всего здесь и возникают новые решения по повышению качества «захвата» рабочего органа, устранению проблем со смятиями и пр. То же самое отмечается и в верхней части штока, обеспечивающего связь с приводом.

Верхняя часть штока с ходовой резьбой имеет важное значение, поскольку обеспечивает основную функцию – передачу усилия. При больших давлениях становится важным и обеспечение функции антивыдавливания штока даже при смятии и вырыве штока из резьбы (рис. 3а). Но иногда функцию антивыдавливания выполняют конструктивные элементы и в нижней части штока, как показано на рис. 3 б. Однако эта функция является вспомогательной по отношению к основной функции системы, но важной по отношению к надсистеме – функции обеспечения внешней безопасности арматуры в целом.

Рисунок 3 а ― Элемент антивыдавливания штока
Рисунок 3 б ― Элемент антивыдавливания штока

Незаметной, но серьезной проблемой оказались поломки штоков. Наиболее часто этот вопрос возникал в работе штоков шаботов молотов, приводя к неисправимым разрушениям штоков. В штоках арматуры, пневмоприводов и гидроприводов подобные поломки практически не упоминаются, очевидно, в связи с многократным запасом прочности, задаваемым конструкторами. Однако известно, что при резком подрыве затвора, например, в клиновых задвижках при их прикипании или заклинивании уровень нагрузки многократно (до 10 раз) превышает допустимый рабочий диапазон нагрузок. Проблемой являются и ошибки персонала, который часто использует недопустимые способы проворота затвора «крючком», что приводит к поломкам штоков.

Как видите, противоречие налицо: чтобы повысить надежность, нужно многократно увеличить прочность, что приводит к удорожанию материала или к росту диаметра штока. При этом увеличение диаметра штока не приводит к росту прочности по отношению к вырывным усилиям, характерным для подрыва затвора арматуры при заклинивании или прикипании затвора к уплотнительным поверхностям.

Меньше длины
Эта закономерность проявляется в том, что противоречие между своей оперативной длиной для открытия и закрытия затвора и собственно требованием длины для внешнего привода решается при помощи перехода к телескопическим штокам (рис. 4).

Рисунок 4 ― Развитие штоков в сторону меньшей длины
Рисунок 5 ― Схема развития штоков по линии повышения гибкости с целью увеличения их длины

Дальнейшим развитием этого решения стало отделение штока, непосредственно связанного с запирающим элементом от трансмиссионной части штока. Система штока начала претерпевать значительные изменения, и для этого потребовался переход по схеме, представленной на рис. 5.

Развитие происходит от цельного жесткого невыдвижного штока к выдвижному штоку и далее, с ростом требуемой длины штока, к телескопическому штоку. Здесь шток практически разделяется на собственно шток арматуры и внешнюю часть штока, обеспечивающего его связь с приводом. С развитием этого решения осуществился переход к криволинейной передаче за счет использования шарниров (рис. 6) и, наконец, к полностью гибкой связи при помощи гибкого вала, длина которого может быть довольно велика (рис. 7).

Рисунок 6 ― Пример реализации штока на шарнирах
Рисунок 7 ― Гибкий вал

Меньше веса
Шпиндели и штоки арматуры должны иметь малую массу. Это связано с тем, что вибрация, идущая от рабочего органа, напрямую передается на шток, который из-за этого испытывает значительные знако-переменные и циклические нагрузки. Чем более «увесист» шток, тем сильнее будет вибрация, близость к разрушению штока и к выходу из строя арматуры в целом. Очевидно, что этой тенденции отвечает одно из главных направлений в развитии штоков – повышение мощности передаваемого усилия при снижении веса штока, например, за счет использования более прочных металлов или трубчатых конструкций.

Больше силы

Эту тенденцию легко заметить, если увидеть, что штоки и шпиндели всегда выполняются из более «сильных» материалов, способных выдерживать разнообразные виды нагрузок. Это и резкие растягивающие нагрузки, близкие к ударным, и характерные, например, для подрыва клина в клиновой задвижке; частые скручивающие нагрузки, характерные для поворотной арматуры, термонапряжения, характерные для условий неравномерного нагрева шпинделя при пуске трубопровода и пр. И все это, как правило, происходит под коррозионным действием среды. В этом случае выдерживать их «поручается» только наиболее сильным материалам. Для этого большое внимание уделяется резервам материала, к которым можно отнести собственно химический состав применяемых сталей, а также их структуру.

Стандартные достижения в применении материалов зафиксированы в таблицах, приводимых в ГОСТах, например, в таблице 3.

Таблица 3 – Механические свойства материалов для штоков энергетической арматуры

Выход за пределы стандартных материалов наметился тогда, когда стало ясно, что ни один из них (кроме коррозионностойких и жаропрочных сталей) не способен противостоять коррозии. Тогда на сцену вышли штоки из титановых сплавов, скорость коррозии которых составляет не более 0,01мм\год (1 балл) по сравнению с традиционными сталями типа 25Х2М1Ф, имеющими скорость коррозии в несколько раз выше (6-7 баллов). Правда, и стоимость таких штоков достигает 30 000 руб. за ед., что во много раз превосходит стоимость штоков из стали. Таким образом, противоречие «цена – длительность использования» преодолеть в полном объеме не удалось.

Одной из серьезных проблем, которую удалось выявить при экспресс-анализе штоков, оказалась недостаточная связь прочностных свойств материалов с характеристиками штоков. Так, стремление повысить прочность наталкивается на известную проблему снижения пластичности и ударной вязкости материала и выход на катастрофическое разрушение при обрыве штока. К тому же сплошной материал из-за особенностей напряженного состояния при ударно-вырывном нагружении, характерном при эксплуатации штоков арматуры, ведет себя как материал с повышенной хрупкостью, реагирующий даже на малые трещины. Поэтому попытки увеличить диаметр штока обычно не дают результата, но приходится уделять серьезное внимание отсутствию коррозии и особенно трещин на поверхности штока.

В свою очередь это означает, что коррозия штока или требование отсутствия трещин являются подчиненными прочностным требованиям и требованиям повышения пластичности материала. Поэтому изыскиваются способы одновременного повышения прочностных свойств, твердости и сопротивления коррозии, особенно питтинговой, как наиболее влияющей на образование и развитие хрупких трещин. Наиболее часто при этом используют азотирование.

Однако требования повышения прочностных и пластических свойств при исчерпании резервов материала могут решаться и другими путями. Так, эти свойства во многом зависят от конструкции.

Мы также можем отметить, что в связи с различием требований к каждому элементу штока по табл. 2 найти один материал, который бы отвечал всем требованиям, становится невозможно. Так, требование передачи крутящего момента требует оптимального сочетания прочности, пластичности и противостояния смятию, требование отсутствия задиров – повышению твердости, а способность противостоять вырывным усилиям – требованию пологости роста предела текучести или при сопротивлении катастрофическим разрушениям – требованиям высокой ударной вязкости.

Такова основная направленность развития штоков арматуры, которую можно выявить при экспресс-анализе. Однако многие пути, которые еще не исследованы и которые штокам и шпинделям арматуры только еще предстоит пройти, мы можем обнаружить в развитии их надсистемных «собратьев» – деталей класса «валы и оси». Рассматривать их развитие мы, конечно же, будем с точки зрения основных противоречий, которые могут еще только проявиться в развитии штоков, исходя из сделанного нами анализа основных направлений.

Опубликовано в "Вестнике арматурщика" № 6 (26) 2015

Продолжение - в "Вестнике арматурщика" № 7 (27) 2015


Размещено в номере: "Вестник арматурщика" № 6 (26) 2015
Журнал Вестник Арматуростроения
Заводы 30 Стандартизация 35 Газ.Нефть.Технологии УФА 14 ЗАО РОУ 22 Вестник арматуростроителя 53 НПО Регулятор 13 Тулаэлектропривод 29 импортозамещение 25 видеорепортаж 38 Ямал СПГ 12 НПАА 34 ОМК 97 Северный поток 10 Теплоснабжение 23 Ремонт и реконструкция 46 Нефтепереработка 18 Инвестиции 49 Запорная арматура 68 Сертификация 78 Фобос 11 Тяньваньская АЭС 10 Нефтегаз-2016 11 Регулирующая арматура 23 Запорно-регулирующая арматура 32 Транснефть 110 Красный Котельщик 10 Патенты 12 Импортозамещение 139 Газпром 195 Награды 23 Аудиты 15 Шаровые краны 106 Клапаны 57 Трубы 51 Новинки и разработки 100 Тендеры и закупки 26 Модернизация производства 79 Контроль и испытания 24 Газ 38 Новое строительство 52 Выставки 40 Обучение и кадры 16 Автоматизация 37 Локализация 28 НИОКР 36 Теплоэнергетика 13 Инновации 38 Международное сотрудничество 82 СПГ 35 Приводы 42 Нефтегаз 45 Новинки 63 посещение предприятий 15 КТОК 27 Нефть и газ 112 Экология 15 Насосное оборудование 54 Сила Сибири 22 РАВВ 13 ТЭЦ 18 Армалит 31 ЧТПЗ 92 АДЛ 62 ТЭКО-ФИЛЬТР 29 Сумское НПО 30 РОСТРАНСМАШ Трейд 11 РТМТ 33 РЭП Холдинг 15 ГОСТ 14 ОМЗ 22 Сплав 22 Белэнергомаш-БЗЭМ 15 АЭМ-технологии 18 Роснефть 49 Темпер 24 Курганский арматуростроительный кластер 15 ЖКХ 24 АУМА 40 Ижнефтемаш 18 Ивано-Франковский арматурный завод 17 «АДЛ» 34 Трубная металлургическая компания 39 МК Сплав 111 Новомет 10 Завод Трубодеталь 21 АЭС 47 задвижки 14 ОМЗ-Спецсталь 13 ДС Контролз 20 ARMTORG 12 выставка 154 Москва 29 МашСталь 12 арматура 32 ЦКБА 12 Арматурные истории 13 МосЦКБА 11 трубопроводная арматура 609 Danfoss 128 клапан 12 БКЗ 41 Барнаульский котельный завод 39 литье 22 Судостроение 13 Astin BGM Group 12 Астин 10 ЦНИИТМАШ 16 нефть 43 Данфосс 151 Саранский приборостроительный завод 12 Санкт-Петербург 18 KSB 36 Задвижки 32 Camozzi 15 БАЗ 18 Волгограднефтемаш 46 Омский НПЗ 14 Томская электронная компания 10 ТЭК 10 Ростовская АЭС 15 шаровой кран 15 БРОЕН 11 Итоги года 32 Росатом 92 Атомэнергомаш 61 Индустриальный парк 10 Минпромторг 27 ОЗНА 13 Завод Водоприбор 11 запорная арматура 21 Константа-2 10 ООО Паровые системы 14 Россия 33 Уралхиммаш 18 Индия 10 Emerson 48 Пензтяжпромарматура 25 AUMA 24 «РусГидро» 11 «Конар» 15 ООО «Приводы АУМА» 43 Корпорация «Сплав» 26 ООО "Темпер" 15 ARAKO 13 АБС ЗЭиМ Автоматизация 80 «Трубодеталь» 15 «Армалит» 22 НПО "Регулятор" 15 водоснабжение 26 Hawle 23 Татнефть 11 ТМК 53 Гусар 34 Metso 17 ПОЛИПЛАСТИК 25 ТермоБрест 49 Росстандарт 18 НПО ГАКС-АРМСЕРВИС 36 Курганская область 33 ООО «РТМТ» 26 «ПРИВОДЫ АУМА» 22 Энергомашкомплект 13 модернизация 58 Арматурный Завод 11 ВМЗ 32 Росводоканал 16 Первоуральский новотрубный завод 15 Трубодеталь 14 НОВАТЭК 20 LD 36 НПО ГАКС Армсервис 13 Благовещенский арматурный завод 19 Водоприбор 15 ФРП 11 АЭМ - технологии 13 Петрозаводскмаш 17 США 12 рынок 14 Транснефть – Диаскан 15 ПромАрм 24 Valve Industry Forum & Expo 10 Honeywell 12 ФАС 11 АБС Электро 44 Газ. Нефть. Технологии 28 испытательные стенды 11 ГУП ТЭК СПб 19 ПТПА 21 ПРИВОДЫ АУМА 35 электроприводы 80 Курган 26 Тюмень 15 теплообменник 10 Дайджест арматуростроителя 136 СПД БИРС 11 промышленность 14 предохранительные клапаны 15 ГЕАЗ 20 электропривод 16 Реком 11 Китай 28 дисковые затворы 12 газовое оборудование 11 Самараволгомаш 10 Курганский арматурный завод 16 НПП ТЭК 13 Силовые машины 25 форум 24 VALTEC 39 семинар 33 ЗапСибНефтехим 26 Магнитогорский металлургический комбинат 22 ММК 26 Северсталь 19 Тяжпромарматура 20 ПАО Татнефть 10 Заметки редактора 44 Armtorg 49 сильфонные компенсаторы 13 GRUNDFOS 25 ГРУНДФОС 22 Авангард 11 Арматуростроитель года 18 ARMATURY Group 11 Иран 11 электроэнергетика 11 металлургия 23 газопровод 31 нефтегазовая отрасль 37 машиностроение 42 итоги 30 КОНАР 26 фитинги 13 конкурс 39 ГАКС-АРМСЕРВИС 30 производство 30 ИФАЗ 21 HEAT&POWER 19 Ижорские заводы 18 Астима 12 СИБУР 45 Нововоронежская АЭС 2 15 Хавле Индустриверке 14 Сумское машиностроительное научно-производственное объединение 22 тендер 13 интервью 77 юбилей 25 автоматизированные системы управления 10 обзор 14 ПКТБА 15 испытания арматуры 14 ПНТЗ 11 РОУ 25 Редукционно-охладительные установки 25 регулирующие клапаны 21 Турция 15 банкротство 14 аудит 31 ЧелябинскСпецГражданСтрой 24 экспорт 19 СеверМаш 11 Белорусская АЭС 20 нефтепровод 25 Хавле 13 литейное производство 45 оборудование 23 рейтинг 19 Арзамасский приборостроительный завод 22 РАСКО 23 НПФ РАСКО 30 обучение 23 KSB Group 16 Челябинск 14 обратные клапаны 17 ЧЗЭМ 30 аккредитация 14 атомная промышленность 10 Temper 10 НТА-Пром 14 газовая отрасль 17 Петербургский Международный Газовый Форум 25 Белэнергомаш 24 ГК Авангард 10 Старооскольский арматурный завод 18 Uni-Fitt 11 Контур 10 вебинар 13 фильтры 13 МЗТА 13 конференция 81 Северный поток 2 26 Загорский трубный завод 19 ЗАО "ДС КОНТРОЛЗ" 10 Эмерсон 23 АО «ОКБМ Африкантов» 14 ГК Римера 31 Уплотнения 10 Метран 12 Казахстан 20 Денис Мантуров 13 затворы 17 Транснефть-Сибирь 11 сотрудничество 48 Viessmann 13 ЗиО-Подольск 16 Будущее Белой металлургии 11 Лукойл 30 WorldSkills 14 Новое производство 23 Valve World Expo 24 машиностроительная корпорация СПЛАВ 11 поставка арматуры для АЭС 12 АЛНАС 11 РИМЕРА 12 Valve World Expo - 2016 10 Этерно 12 Владимир Путин 11 расширение ассортимента 15 АЭС Куданкулам 12 ремонт 17 качество 12 новинка 41 Объединенная металлургическая компания 45 Выксунский металлургический завод 17 стенд 13 WorldSkills Russia 11 ЗАО «ПГ «Метран» 10 PCVExpo 24 Криоген-Экспо 13 нефтегазовый комплекс 11 ЗАО "РОУ" 17 судовая арматура 13 история арматуростроения 12 автоматизация 14 локализация 15 HERZ 12 Группа ГМС 16 контрафакт 12 магистральный нефтепровод 13 конкурс проектов 12 Газпром нефть 12 новое оборудование 18 энергоэффективность 14 маркетинг 10 шаровые краны 42 трубопроводная арматура для АЭС 15 поставка 42 теплоснабжение 10 Aquatherm Moscow 57 развитие производства 18 строительство газопровода 20 совещание 10 расширение линейки 18 производство трубопроводной арматуры 16 фланцы 11 Интергазсерт 11 семинары 22 САЗ Авангард 17 Курганхиммаш 21 Экспоцентр 11 насосные агрегаты 17 трубопроводы 26 Эго Инжиниринг 24 Группа ЧТПЗ 100 белая металлургия 15 Нефтегаз 2017 15 нефтедобыча 12 премия 13 Энергомаш (Чехов) - ЧЗЭМ 24 Атоммаш 12 Сибэнергомаш-БКЗ 11 Уфа 10 rotork 12 тепловые сети 10 строительство 17 поставки трубопроводной арматуры 11 Алексей Миллер 10 обновление 16 насосы 21 соглашение 13 Металлообработка 17 технический семинар 17 котлы 15 ТВЭЛ 10 Минпромторг РФ 18 трубная продукция 37 Энергетика 12 испытания 15 поставки оборудования 14 поставка оборудования 97 патент 12 ПНФ ЛГ автоматика 14 открытие производства 23 инжиниринг 12 новинки 17 криогенная арматура 18 Группа ПОЛИПЛАСТИК 10 MIOGE 18 Машиностроительная корпорация «Сплав» 18 Danfoss Drives 11 ИННОПРОМ 2017 10 Российское арматуростроение 23 ПМГФ 31 ВАРК 16 Сибдальвостокгаз 11 обучение сотрудников 21 система менеджмента качества 16 атомная отрасль 31 нефтяная отрасль 16 российское производство 75 Видеорепортаж с производства 10 арматуростроение 46 котельное оборудование 22 технологии 10 предохранительная арматура 10 Выставка 11 Атомная энергетика 17 трубопровод 12 сравнение конструкций 11 опыт эксплуатации 24 медиагруппа Armtorg 56 международная выставка 25 мировое арматуростроение 25 БИРС Арматура 20 АО "Атомэнергомаш" 10 Госкорпорация Росатом 11 отгрузка оборудования 30 награда 19 деловая встреча 11 ЭЛЕМЕР 14 пао газпром 14 Госкорпорация "Росатом" 13 участие в выставках 44 проблемы отрасли 10 проектирование 11 новые технологии 38 компания АДЛ 23 НПО «Регулятор» 13 ПАО «Газпром» 14 Бирс 12 СП "ТермоБрест" ООО 21 ЗАО «Тулаэлектропривод» 10 награждение 18 Нефтегаз-2018 10 Sandvik Coromant 12 поздравление 22 праздник 11 Lady арматуростроения 14 российское арматуростроение 54 сибэнергомаш 13 медиагруппа ARMTORG 24 делегация 18 трубное производство 11 YDF Valves 13 международные стандарты 11 новые разработки 91 водный форум 12 запорно-регулирующая арматура 14 Заводы трубопроводной арматуры 23 PCVExpo 2018 12 интервью с выставки 49 Повышение производительности труда 14 видеорепортаж с производства 40 фоторепортаж 14 выставки 12 сертификация 10 ЛГ Автоматика 17 интервью с дирекцией 27 видеорепортаж с производственной площадки 13 Белэнергомаш – БЗЭМ 18 Точприбор 13 ЭКВАТЭК 26 участие в выставке 102 Aquatherm Moscow 2019 22 ПМГФ - 2018 17 видеообзор 13 Легенды арматуростроения 10 ЭКВАТЭК 2018 13 трубная промышленность 29 участие в форуме 21 участие в конференции 10 модернизация оборудования 14 Hartmann 10 цифровизация 15 деятельность МГ Armtorg 11 Материалы конференции «Внутренняя стандартизация конечных потребителей трубопроводной арматуры. Новые разработки в отрасли арматуростроения» 12 Конкурс 10 Ассоциация "Сибдальвостокгаз" 10